
MuleCon San Francisco (March 27-28, 2007)

OSGi and MuleOSGi and MuleOSGi and MuleOSGi and Mule

Travis Carlson

MuleCon San Francisco (March 27-28, 2007)

What is OSGi?

• Dynamic module system for Java

• A sort of Java OS

• SOA within your app!

MuleCon San Francisco (March 27-28, 2007)

Benefits of OSGi

� Plug & Play!

� Change parts of your app. dynamically without

requiring restarts

� Components dynamically discover each other

for collaboration

� Increased security: more isolation between

modules of your app.

MuleCon San Francisco (March 27-28, 2007)

Industry Support

Plug-in model for Eclipse IDE (Equinox)

Embraced by Spring

IBM Websphere 6.1

JSR 291: Dynamic Component Support for Java

– Supporters: Apache, BEA, IBM, Intel, Nokia, Nortel Networks

MuleCon San Francisco (March 27-28, 2007)

Benefits of OSGi for Mule

Hot deploy your Mule app just like you would a WAR file, EAR file,

etc. in J2EE

A Mule config can use different versions of the same class

Update and restart a part of your running Mule instance without

having to restart all of it

Change Management

High Availability

Hot Deploy

MuleCon San Francisco (March 27-28, 2007)

Benefits of OSGi for Mule

Separate classloader per bundle – not all of Mule has to depend

on the same version of a 3rd party library

Enabling technology for Patch Management in MuleHQ

Dependency Mgmt.

Patch Mgmt.

MuleCon San Francisco (March 27-28, 2007)

How it works

Mule runs within an “OSGi Framework”

MuleCon San Francisco (March 27-28, 2007)

How it works

The Framework manages Bundles and Services:

Bundles – static libraries, may or may not be

startable/stoppable (via BundleActivator interface)

Services – dynamic components managed by a

registry similar to JNDI

MuleCon San Francisco (March 27-28, 2007)

Bundles

Each Mule module/transport is an OSGi “bundle”

containing a special manifest file

The bundle manifest declares:

– Packages provided by this bundle (static)

– Services provided by this bundle (dynamic)

– Required/optional packages (static dependencies)

– Required/optional services (dynamic dependencies)

Both packages and services have a version

associated which is useful for change

management

MuleCon San Francisco (March 27-28, 2007)

Lifecycle

The framework manages bundles according to a

well-defined lifecycle.

MuleCon San Francisco (March 27-28, 2007)

Lifecycle

Audit Trail

Failover

The lifecycle state for each bundle is

persistent in case of a system

crash or restart

The framework keeps a timeline of

each bundle's lifecycle events for

sysadmins

Bundles can be grouped into “run

levels” (like Unix services) and

brought up/down in a layered

approach

MuleCon San Francisco (March 27-28, 2007)

Service Registry

• Mule bundles register their available services

(connectors, transformers, components, etc.) in the

OSGi Service Registry.

• A user's Mule app. then looks up the needed services

from the Registry and binds to them.

• Mule services may appear/disappear and consumers

must react accordingly.

• This decoupling is what makes hot updates possible.

MuleCon San Francisco (March 27-28, 2007)

Spring OSGi

Spring OSGi hides the details of registering

and consuming OSGi services, using

sensible defaults where possible.

Details may be given in a simple, declarative

form within the Spring Beans config file:

– cardinality of dependent services

– handling of ServiceNotAvailable exceptions

– timeouts

MuleCon San Francisco (March 27-28, 2007)

Choosing an OSGi Framework

The big 3 Open Source Frameworks are:

• Equinox (a subproject of Eclipse)

• Knopflerfish (Gatespace Telematics)

• Felix (Apache)

Knopflerfish seems to be the best “fit” for Mule

in a production environment, but since

OSGi is a standard, it should be able to run

in any framework.

MuleCon San Francisco (March 27-28, 2007)

Looking Forward

• OSGi will be the foundation for future

versions of Mule

• It will enable innovative new features for the

Mule platform

